过去,现实世界中社交网络的图表错过了两个重要元素:连接的多重性和表示时间。为此,在本文中,我们为社交网络提供了一个新的动态异质图表示,其中包括图形的每个组件中的时间,即节点和边缘,每种捕获异质性的不同类型。我们通过提出四个与时间有关的查询和深度学习问题来说明这种表示的力量,这些查询和深度学习问题无法轻易在常规的均匀图表中处理。作为概念的证明,我们介绍了新的社交媒体平台(Steemit)的详细表示,我们用它来说明动态查询功能以及使用图形神经网络(GNNS)的预测任务。结果说明了动态异质图表示对社交网络的模型的力量。鉴于这是一个相对研究的领域,我们还说明了在查询优化方面的未来工作以及异质图结构的新动态预测任务的机会。
translated by 谷歌翻译
视网膜眼底图像的自动评估是涌现为最重要的早期检测和治疗渐进眼疾病的工具之一。青光眼导致视力的进步退化,其特征在于光学杯形状的变形和血管的变性导致沿神经垂体边缘形成凹口的形成。在本文中,我们提出了一种基于深度学习的管道,用于从数字眼底图像(DFIS)的光盘(OD)和光学杯(OC)区域的自动分割,从而提取预测青光眼所需的不同特征。该方法利用了神经古代轮辋的局灶性凹口分析以及杯盘比值值作为分类参数,以提高计算机辅助设计(CAD)系统的准确性分析青光眼。支持基于向量的机器学习算法用于分类,基于提取的功能将DFIS分类为青光眼或正常。在自由可用的DRISHTI-GS数据集上评估了所提出的管道,得到了从DFIS检测青光眼的93.33%的精度。
translated by 谷歌翻译
Datacenter operators ensure fair and regular server maintenance by using automated processes to schedule maintenance jobs to complete within a strict time budget. Automating this scheduling problem is challenging because maintenance job duration varies based on both job type and hardware. While it is tempting to use prior machine learning techniques for predicting job duration, we find that the structure of the maintenance job scheduling problem creates a unique challenge. In particular, we show that prior machine learning methods that produce the lowest error predictions do not produce the best scheduling outcomes due to asymmetric costs. Specifically, underpredicting maintenance job duration has results in more servers being taken offline and longer server downtime than overpredicting maintenance job duration. The system cost of underprediction is much larger than that of overprediction. We present Acela, a machine learning system for predicting maintenance job duration, which uses quantile regression to bias duration predictions toward overprediction. We integrate Acela into a maintenance job scheduler and evaluate it on datasets from large-scale, production datacenters. Compared to machine learning based predictors from prior work, Acela reduces the number of servers that are taken offline by 1.87-4.28X, and reduces the server offline time by 1.40-2.80X.
translated by 谷歌翻译
Deep neural networks have emerged as the workhorse for a large section of robotics and control applications, especially as models for dynamical systems. Such data-driven models are in turn used for designing and verifying autonomous systems. This is particularly useful in modeling medical systems where data can be leveraged to individualize treatment. In safety-critical applications, it is important that the data-driven model is conformant to established knowledge from the natural sciences. Such knowledge is often available or can often be distilled into a (possibly black-box) model $M$. For instance, the unicycle model for an F1 racing car. In this light, we consider the following problem - given a model $M$ and state transition dataset, we wish to best approximate the system model while being bounded distance away from $M$. We propose a method to guarantee this conformance. Our first step is to distill the dataset into few representative samples called memories, using the idea of a growing neural gas. Next, using these memories we partition the state space into disjoint subsets and compute bounds that should be respected by the neural network, when the input is drawn from a particular subset. This serves as a symbolic wrapper for guaranteed conformance. We argue theoretically that this only leads to bounded increase in approximation error; which can be controlled by increasing the number of memories. We experimentally show that on three case studies (Car Model, Drones, and Artificial Pancreas), our constrained neurosymbolic models conform to specified $M$ models (each encoding various constraints) with order-of-magnitude improvements compared to the augmented Lagrangian and vanilla training methods.
translated by 谷歌翻译
We study the expressibility and learnability of convex optimization solution functions and their multi-layer architectural extension. The main results are: \emph{(1)} the class of solution functions of linear programming (LP) and quadratic programming (QP) is a universal approximant for the $C^k$ smooth model class or some restricted Sobolev space, and we characterize the rate-distortion, \emph{(2)} the approximation power is investigated through a viewpoint of regression error, where information about the target function is provided in terms of data observations, \emph{(3)} compositionality in the form of a deep architecture with optimization as a layer is shown to reconstruct some basic functions used in numerical analysis without error, which implies that \emph{(4)} a substantial reduction in rate-distortion can be achieved with a universal network architecture, and \emph{(5)} we discuss the statistical bounds of empirical covering numbers for LP/QP, as well as a generic optimization problem (possibly nonconvex) by exploiting tame geometry. Our results provide the \emph{first rigorous analysis of the approximation and learning-theoretic properties of solution functions} with implications for algorithmic design and performance guarantees.
translated by 谷歌翻译
Recovery of true color from underwater images is an ill-posed problem. This is because the wide-band attenuation coefficients for the RGB color channels depend on object range, reflectance, etc. which are difficult to model. Also, there is backscattering due to suspended particles in water. Thus, most existing deep-learning based color restoration methods, which are trained on synthetic underwater datasets, do not perform well on real underwater data. This can be attributed to the fact that synthetic data cannot accurately represent real conditions. To address this issue, we use an image to image translation network to bridge the gap between the synthetic and real domains by translating images from synthetic underwater domain to real underwater domain. Using this multimodal domain adaptation technique, we create a dataset that can capture a diverse array of underwater conditions. We then train a simple but effective CNN based network on our domain adapted dataset to perform color restoration. Code and pre-trained models can be accessed at https://github.com/nehamjain10/TRUDGCR
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
Aspect Based Sentiment Analysis is a dominant research area with potential applications in social media analytics, business, finance, and health. Prior works in this area are primarily based on supervised methods, with a few techniques using weak supervision limited to predicting a single aspect category per review sentence. In this paper, we present an extremely weakly supervised multi-label Aspect Category Sentiment Analysis framework which does not use any labelled data. We only rely on a single word per class as an initial indicative information. We further propose an automatic word selection technique to choose these seed categories and sentiment words. We explore unsupervised language model post-training to improve the overall performance, and propose a multi-label generator model to generate multiple aspect category-sentiment pairs per review sentence. Experiments conducted on four benchmark datasets showcase our method to outperform other weakly supervised baselines by a significant margin.
translated by 谷歌翻译
The SNMMI Artificial Intelligence (SNMMI-AI) Summit, organized by the SNMMI AI Task Force, took place in Bethesda, MD on March 21-22, 2022. It brought together various community members and stakeholders from academia, healthcare, industry, patient representatives, and government (NIH, FDA), and considered various key themes to envision and facilitate a bright future for routine, trustworthy use of AI in nuclear medicine. In what follows, essential issues, challenges, controversies and findings emphasized in the meeting are summarized.
translated by 谷歌翻译
Spiking Neural Networks (SNNs) are bio-plausible models that hold great potential for realizing energy-efficient implementations of sequential tasks on resource-constrained edge devices. However, commercial edge platforms based on standard GPUs are not optimized to deploy SNNs, resulting in high energy and latency. While analog In-Memory Computing (IMC) platforms can serve as energy-efficient inference engines, they are accursed by the immense energy, latency, and area requirements of high-precision ADCs (HP-ADC), overshadowing the benefits of in-memory computations. We propose a hardware/software co-design methodology to deploy SNNs into an ADC-Less IMC architecture using sense-amplifiers as 1-bit ADCs replacing conventional HP-ADCs and alleviating the above issues. Our proposed framework incurs minimal accuracy degradation by performing hardware-aware training and is able to scale beyond simple image classification tasks to more complex sequential regression tasks. Experiments on complex tasks of optical flow estimation and gesture recognition show that progressively increasing the hardware awareness during SNN training allows the model to adapt and learn the errors due to the non-idealities associated with ADC-Less IMC. Also, the proposed ADC-Less IMC offers significant energy and latency improvements, $2-7\times$ and $8.9-24.6\times$, respectively, depending on the SNN model and the workload, compared to HP-ADC IMC.
translated by 谷歌翻译